

## M5-01: Expected Value and Standard Error

Part of the "Polling, Confidence Intervals, and the Normal Distribution" Learning Badge **Video Walkthrough:** <u>https://discovery.cs.illinois.edu/m5-01/</u>

## Mean and Variance of Discrete Random Variables

Previously, we summarized a list of numbers by computing their average and SD. Now we'll do the analogous summaries for random variables (#'s generated by a chance process).

| The mean of a random variable is also                                                                                             | The standard deviation of a random variable                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| known as the <b>expected value</b> (EV). The                                                                                      | as the <b>standard error</b> (SE) and measures                                                                                                                                                                                 |
| expected value of a discrete random                                                                                               | the spread. The SE of a discrete random                                                                                                                                                                                        |
| variable X is shown by:                                                                                                           | variable X is shown by:                                                                                                                                                                                                        |
| $\mu_X = E(X) = X_1 P_1 + \dots + X_n P_n$<br>where: $X_i$ : Value of event # <b>i</b><br>$P_i$ : Probability of event # <b>i</b> | $\sigma_{X} = \sqrt{(X_{1} - \mu_{X})^{2}P_{1} + + (X_{n} - \mu_{X})^{2}P_{n}}$<br>where X <sub>i</sub> : Value of event # <b>i</b><br>$\mu_{X}$ : Expected value of X (see left)<br>$P_{i}$ : Probability of event # <b>i</b> |

**Puzzle #1:** Let's say X is a random variable that looks at the number of workouts that I will do in a week. Here's the distribution. Find the expected value (EV) of X and the standard error (SE) of X:

| Х | P(X) |
|---|------|
| 0 | 0.1  |
| 1 | 0.15 |
| 2 | 0.4  |
| 3 | 0.25 |
| 4 | 0.1  |

We can also make a histogram of all possible outcomes of a chance process and their probabilities. **This type of histogram is known as a probability histogram.** Probability histograms for discrete random variables are also known as probability mass functions (**pmf**). Probability histograms for continuous random variables are also known as probability density functions (**pdf**). Draw the pmf below:

